РЕДУКТОР

Объявление

На форуме можно записывать математические формулы! Установите Math player. Смотрите раздел "О форуме".

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » РЕДУКТОР » Естественные науки » Противоречит ли эфир теории относительности Эйнштейна?


Противоречит ли эфир теории относительности Эйнштейна?

Сообщений 1 страница 2 из 2

1

ЭФИР ВОЗВРАЩАЕТСЯ?

Доктор философии в области физики К. ЗЛОСЧАСТЬЕВ. (Национальный автономный университет Мексики, Институт ядерных исследований, кафедра гравитации и теории поля).

Доктор философии в области физики К. ЗЛОСЧАСТЬЕВ. (Национальный автономный университет Мексики, Институт ядерных исследований, кафедра гравитации и теории поля).
"Пятый элемент": история и современный взгляд.Противоречит ли эфир теории относительности Эйнштейна? Гипотеза эфира, "пятого элемента" некой невидимой субстанции, наполняющей Вселенную, господствовала в философии и науке более чем две тысячи лет - до 1905 года, когда Альберт Эйнштейн опубликовал свою первую работу по теории относительности (ТО). Из теории, в частности, следовало, что эфир - вещь для электродинамики в принципе необязательная, и лезвие бритвы Оккама неприятно сверкнуло над горлом некогда столь незыблемого "пятого элемента". Эксперименты Майкельсона - Морли и их последователей (кстати, продолжающиеся и в настоящее время) не выявили каких-либо проявлений эфира, и теории, которые на нем базировались, постепенно перекочевали со страниц серьезных научных изданий в труды непризнанных гениев-изобретателей, поэтов, бродячих философов и оккультных служителей лохотрона, где и деградировали окончательно. Но не рано ли зачитан некролог, а что, если пациент скорее жив, чем мертв? Эта статья о направлении в фундаментальной физике, которое стало особенно популярным в последние два-три года, - о гипотезе релятивистского эфира (Einstein Aether) и нарушении Лоренц- и cpt-инвариантности, то есть о теоретических предсказаниях и экспериментальных поисках отклонений от теории относительности и Стандартной модели.

ЕХАЛ ГРЕК А. ЧЕРЕЗ РЕКУ

Первоначально словом эфир (aether) в греческой мифологии обозначали "божественно чистый свежий воздух", находящийся высоко в небе и доступный для дыхания лишь живущим в нем богам, в отличие от обыкновенного воздуха (aer), которым дышат простые смертные. Древние греки ассоциировали эфир с одноименным божеством, сыном богини ночи Никс и ее брата - первобога тьмы Эребуса. Позднее Аристотель (384-322 до н. э.) ввел эфир как пятый элемент (квинтэссенция ) в систему классических элементов (изначально четырех: земля, воздух, вода и огонь), изобретенную Ионической философской школой. Он мотивировал свое нововведение тем, что четыре земных элемента находятся в непрерывном изменении и могут двигаться по прямым линиям, тогда как небесные тела казались ему вечными и неизменными и двигались исключительно по округленным траекториям. Таким образом, эфир в представлении Аристотеля не имел обычных физических свойств и какой-либо внутренней структуры, не был подвержен изменениям и двигался исключительно по окружностям.

В Средние века философы-схоласты, Роберт Флудд (1574-1637) и другие, дополнительно наделили эфир плотностью, при этом разумно предположив, что плотность вещества, из которого сделаны небесные тела, должна быть больше плотности эфира. Парадокса, что более плотные тела могут столетиями столь устойчиво "плавать" в менее плотном эфире, похоже, никто не заметил, а может, все списали на божественную силу, понимание которой недоступно простым смертным.

НОЧНОЙ ЗЕФИР СТРУИТ ЭФИР

Скудость эмпирической информации об эфире вкупе с его изначально божественным происхождением сделали эфир своего рода мистическим идолом человеческой цивилизации и "красным словцом" литературы, будоражащим беспокойные умы и поныне. Наиболее поэтически настроенные из них не смирились с отсутстви ем наблюдаемых данных о предмете познания и решительно двинулись вперед. Одни сразу же наделили эфир богатой внутренней структурой, имеющей первостепенное значение для зарождении Вселенной:

И над вами сиять
будет вечно подвижный эфир,
Полный ангельских крыл,
Создающих пространство и пламя.
А. Шохов

Автор, впрочем, не вдавался в разные несущественные детали, например, откуда берется энергия на такого рода спецэффекты и почему мы их на данный момент не видим. Другие занялись вопросами рождения-уничтожения и вообще измерения эфира как такового:

И возрождают вновь эфир
Всевышним посланные бури...
Нет меры и предела нет
Эфиру, коим мир одет...
В. Кюхельбекер

При этом Вильгельм Карлович, естественно, не уточнил, какие именно бури имеются в виду, какое математическое определение меры и предела используется и т. д. Третьи попытались заняться исследованием геометрических характеристик эфира:

И райский свет, и воздух, и эфир,
И текстов Неба ангельские строчки
Оберегают наш с тобою мир
Подобием овальной оболочки.
Л. Никонова

Эти авторы натолкнулись на значительные трудности топологического плана.

Другая группа поэтов-"исследователей" обратилась к изучению физико-химических свойств космического эфира, например, его вибрационных характеристик (сделав при этом ряд правильных выводов, хотя логически не совсем понятным образом):

Горит звезда, дрожит эфир,
Таится ночь в пролеты арок.
Как не любить весь этот мир,
Невероятный Твой подарок?
В. Ходасевич

и его агрегатного состояния:

Таков наш безначальный мир.
Сей конус - наша ночь земная,
За ней - опять, опять эфир
Планета плавит золотая...
А. Блок

Александр Александрович, к сожалению, не уточнил ни температуру плавления, ни прочие параметры фазового перехода предположительно твердого (аморфного? кристаллического?) эфира. Естественно, что эта гипотеза встретила "возражение" других "исследователей", утверждающих, что эфир в нормальных условиях на самом деле находится в жидком состоянии, близком к точке кипения, то есть в состоянии перехода в газ:

Эфир кипит!
Никто не спит!
И. Федина

Автор напоминает о необходимости быть бдительным и не позволять темному облаку непроверенных теорий заслонять солнце истины.

Было также "исследовано" возможное влияние эфира на метеорологические свойства атмосферы и сезонные изменения климата:

Порхает, взлетает, стремится в движенье:
Подвижно-живое чуждается стай.
Пусто, величаво, как диво творенья,
Эфир первородный, рождающий май.
В нем остов не плотный,
но дух без прерывов.
Все сжато снаружи, раздельно внутри.
В нем самобогатство ритмичных порывов,
Без тучки и дымки парит он вдали.
Хуан Юэ

Но сложности с предсказанием погодных явлений были слишком велики, чтобы сделать какие-либо конкретные выводы, что и было замечено одним японским поэтом, имя которого история умалчивает:

Пьянящий аромат травы
После дождя
На луг стрекозы полетели…

Наконец, третья группа "исследователей" оптимистично предположила, что эфир - субстанция по определению здравомыслящая и, возможно, не лишенная музыкального слуха и даже некоторой душевности, ибо

В великий час рождения вселенной,
Когда извлек Всевышний перст
Из тьмы веков эфир одушевленный
Для хора солнцев, лун и звезд…
А. Полежаев (авторская лексика сохранена)

Поэтому лучший способ узнать что-нибудь об эфире - спросить его самого, пойти на прямой контакт, как делают все разумные существа. Начало было многообещающим:

Я дозвонился в эфир,
Эфир наполнен тобой.
Я пью холодный кефир.
Играет нежный гобой.
И. Клиновой

Впоследствии по неизвестным причинам канал связи был безвозвратно утерян, и установить личность существа, наполняющего эфир, и процент самой наполняемости сейчас представляется невозможным. Роли охлажденного кисломолочного продукта и музыкального инструмента в этом процессе также остались невыясненными. Дальнейшие попытки контакта неизменно оканчивались провалом:

Бессловесен эфир меж тобою и мною.
На столе - стеариновый отсвет луны…
А. Габриэль

Но я, затерянный в кудрях
травы летейской,
я, бурей брошенный в эфир глухонемой…
В. Набоков

И разочарованные исследователи даже стали подозревать эфир в подготовке заговора против человечества:

…бесконечный эфир, через который мы несемся […] навстречу неведомому концу, какой-то ужасной катастрофе, подстерегающей нас на последней грани пространства, где мы низвергнемся в какую-нибудь эфирную Ниагару…

Артур К. Дойл. Отравленный пояс

В общем, этот путь не прибавил "исследователям" ни бодрости, ни оптимизма:

Темь-пустота, безликий эфир.
Жизнь - короткая, как доска,
Чего же еще ты хочешь искать?
А. Мансветов

А у некоторых, в конце концов, он даже спровоцировал мысли об уходе из жизни:

Когда же ласточкой взовьюсь я
В тот лучший мир,
Растаю и с тобой сольюсь я
В один эфир…
А. Одоевский

Это не могло не обеспокоить общественность. К счастью, человечество уже приходило к осознанию того, что понимание природы эфира и даже просто само доказательство или опровержение его существования невозможны без предварительного понимания природных явлений, затрагивающих остальные четыре первоэлемента - те, с которыми человек сталкивается в повседневной жизни:

Что зыблет ясный ночью луч?
Что тонкий пламень в твердь разит?
Как молния без грозных туч
Стремится от земли в зенит?
Как может быть, чтоб мерзлый пар
Среди зимы рождал пожар?..
Иль в море дуть престал зефир,
И гладки волны бьют в эфир.
Сомнений полон ваш ответ
О том, что окрест ближних мест.
Скажите ж, коль пространен свет?
И что малейших дале звезд?
Неведом тварей вам конец?
Скажите ж, сколь велик творец?
М. Ломоносов

Такая постановка вопроса в свою очередь подразумевает необходимость создания четкой и последовательной структуры мироздания. По времени это совпало с появлением физики - науки о природе, которая должна была стать более мощным инструментом познания наблюдаемой Вселенной, чем мифология, религия и философия, вместе взятые.

ЭФИР, ВЕЗДЕ ОДИН ЭФИР

С открытием Ньютоном законов классической механики началась эра теоретической физики - математической науки, которая позволяла предсказать или отвергнуть возможность существования того или иного феномена до начала попыток его наблюдения и/или соответствующего эксперимента. Люди осознали, что получили интеллектуальный инструмент для исследования того, чего могло и не быть. Однако предположение, что эфир все-таки может существовать, толкал их на разработку теорий, объясняющих те или иные явления с помощью эфира.

Эфир Ньютона. Классическая механика Ньютона легко отняла у Аристотелевой теории "вихревого эфира" статус теории, объясняющей планетарное движение, но полностью отвергнуть эфир Ньютон не смог. Во-первых, классическая механика сама по себе содержала концепции абсолютно го пространства и абсолютного времени, и предполагалось, что взаимодействия между телами распространяются мгновенно. В этом случае эфиром можно было назвать как само абсолютное пространство и время (выделенную систему отсчета - СО*), так и механическую среду, по которой распространяются гравитационные и электромагнитные взаимодействия.

Действительно, в выражение для силы Лоренца, действующей на электрически заряженную частицу в магнитном поле, входит скорость этой самой частицы. Вопрос: скорость частицы относительно чего, то есть, в какой системе отсчета? Значит, необходимо либо найти ту единственную "истинно верную" СО, относительно которой надлежало делать все расчеты, либо перестать считать понятие трехмерного вектора силы фундаментальным (Эйнштейн пойдет по второму пути и добьется подлинного понимания, но до этого должно еще пройти двести лет господства нерелятивистской механики и эфира).

Во-вторых, в попытке дать единое описание света, вещества и гравитации Ньютон пишет книгу "Optiks", где эффекты влияния гравитации и вещества на свет объясняются изменениями скорости света (напоминаем, что скорость света постоянна только в вакууме), в свою очередь обусловленными изменениями плотности эфира. Согласно его теории, частицы света (Ньютон уже тогда предполагал, что свет имеет не только волновую, но и корпускулярную природу!) отклоняются в сторону более высокой плотности или в сторону более сильно притягивающей массы.

Как бы то ни было, теория ньютоновского эфира окончательно рухнула после того, как выяснилось следующее. Во-первых, Ньютон ошибочно предполагал, что свет в веществе притягивается к областям, где он имеет более высокую скорость; во-вторых, величина эффекта "красного смещения" (увеличение длины света при прохождении в окрестности массивного тела), посчитанная согласно теории, отличалась от экспериментально измеренной чуть ли не в два раза.

Светоносный эфир. Джеймс Максвелл в 1864 году выводит свои уравнения, объединившие электричество и магнетизм, и утверждает, что свет есть электромагнитная волна, которая может распространяться в вакууме исключительно с фиксированной скоростью - 310 740 км/с. В механике Галилея - Ньютона это могло выполняться только в какой-то одной системе отсчета, и поэтому такая гипотетическая выделенная система отсчета была объявлена сопутствующей эфиру как среде, в которой распространяется свет. Таким образом, эфир должен быть неподвижен и одинаков в любой точке наблюдаемой Вселенной, иначе скорость света должна изменяться в пространстве. Теоретические расчеты и существующие на то время экспериментальные данные уже позволяли сказать, какими свойствами должен обладать светоносный эфир, чтобы удовлетворять всем требованиям теории. Эти свойства оказались совершенно сверхъестественными: он должен быть текучим, как жидкость или газ, чтобы равномерно наполнять пространство, и вместе с тем в миллион раз тверже, чем сталь, чтобы поддерживать высокие частоты электромагнитных волн. Кроме того, эфир должен быть безмассовым и с нулевой вязкостью, чтобы минимизировать собственное влияние на орбиты планет, а также полностью прозрачным, несжимаемым, нерассеивающим и непрерывным вплоть до самых малых масштабов. Такой эфир выходил за все рамки здравого смысла и становился вопросом веры.

КАРЕТА ПОДАНА, СЭР!

Девятнадцатый век поднял технологию на новую ступень и освободил человечество от многих догм прошлого. Физики тоже расширили свои экспериментальные возможности, с успехом использовав новые технологии для получения ответов на вопросы, ранее считавшиеся недоступными для рационального объяснения. Существование глобального светоносного эфира было едва ли не самым важным из них…

Земля движется по орбите со скоростью около 30 км/с; таким образом, она должна ощущать "эфирный ветер", угол падения и величина которого в заданной точке поверхности планеты станут меняться в зависимости от времени года и суток. Влияние эфирного ветра на свет должно быть подобно влиянию обычного ветра на звуковые волны, то есть скорость распространения света в различных направлениях будет различной, согласно нерелятивистскому закону сложения скоростей.

В 1881-1887 годы Альберт Майкельсон (Michelson) и Эдвард Морли (Morley) осуществили один из наиболее важных экспериментов в истории физики, идея которого используется до сих пор из-за достигаемой высокой точности. Луч света из источника попадает на частично посеребренное зеркало, где разделяется на два луча (обозначенные на рисунке зелеными и синими стрелками), которые направляются в разные стороны. Там они отражаются от зеркал (отстоящих от центрального на одинаковом расстоянии) и в конце концов попадают в один детектор - экран. Если скорость света различна в этих двух направлениях, то один из лучей должен прийти с запаздыванием, и в детекторе должна наблюдаться интерференционная картина**.

Эксперимент показал, что никаких сезонных эффектов не наблюдается. И даже если эфир существует, его скорость относительно прибора не может превышать 8 км/с. Последующие эксперименты подобного рода, проведенные в XX веке Миллером (Miller), Томашеком (Tomascheck), Кеннеди (Kennedy), Иллингворсом (Illingworth), Пиккардом (Piccard), Стаелем (Stahel), Джусом (Joos), Таунсом (Townes) и другими, к 1959 году снизили этот порог до 25 мм/с. Наконец, эксперимент Брилле - Холла (Brillet - Hall), проведенный в 1979 году, поставил рекорд: разница между скоростями двух лучей, испущенных гелий-неоновым лазером в противоположных направлениях, не превышала по порядку величины одной тысячной миллиметра в секунду. Но в принципе все было понятно задолго до 1979 года: в 1905 году Альберт Эйнштейн предложил устранить парадоксы электромагнетизма, отказавшись от гипотезы абсолютного пространства, абсолютного времени и силы, мгновенно передающейся на расстояние. Механику Ньютона и теорию относительности Галилея вобрала в себя релятивистская теория относительности, эфир стал не нужен и был отправлен в изгнание.

(Окончание следует.)

"Наука и жизнь", №1, 2007

2

ЭФИР ВОЗВРАЩАЕТСЯ? "ПЯТЫЙ ЭЛЕМЕНТ": ИСТОРИЯ И СОВРЕМЕННЫЙ ВЗГЛЯД. ПРОТИВОРЕЧИТ ЛИ ЭФИР ТЕОРИИ ОТНОСИТЕЛЬНОСТИ ЭЙНШТЕЙНА?

Доктор философии в области физики К. ЗЛОСЧАСТЬЕВ. (Национальный автономный университет Мексики, Институт ядерных исследований, кафедра гравитации и теории поля).

Окончание. Начало см. "Наука и жизнь" № 1, 2007 г.

I'LL BE BACK?

После создания теории относительности эфир стал не нужен и был отправлен в изгнание. Но было ли изгнание окончательным и бесповоротным? За сто лет теория Эйнштейна продемонстрировала свою состоятельность в многочисленных экспериментах и наблюдениях как на Земле, так и в окружающем нас пространстве, и пока нет никаких оснований для замены ее на что-то еще. Но являются ли теория относительности и эфир взаимоисключающими понятиями? Парадоксально, что нет! При определенных условиях эфир и выделенная система отсчета могут существовать, не противореча теории относительности, по крайней мере ее принципиальной части, которая подтверждена экспериментально. Чтобы понять, как такое может быть, мы должны углубиться в самое сердце теории Эйнштейна - лоренцеву симметрию.

Изучая уравнения Максвелла и эксперимент Майкельсона-Морли, в 1899 году Хендрик Лоренц заметил, что при преобразованиях Галилея (состоящих из вращений в трехмерном пространстве, тогда как время абсолютно и не изменяется при переходе к другой системе отсчета) уравнения Максвелла не остаются неизменными. Лоренц вывел, что уравнения электродинамики обладают симметрией только относительно неких новых преобразований. (похожие результаты были независимо получены еще раньше: Вольдемаром Войтом в 1887 году и Джозефом Лармором в 1897 году.) В этих преобразованиях помимо трехмерных пространственных вращений время дополнительно преобразовывалось вместе с пространством. Иными словами, трехмерное пространство и время объединялись в единый четырехмерный объект: пространство-время. В 1905 году великий французский математик Анри Пуанкаре назвал эти преобразования лоренцевыми, а Эйнштейн взял их за основу своей специальной теории относительности (СТО). Он постулировал, что законы физики должны быть неизменными для всех наблюдателей в инерциальных (движущихся без ускорения) системах отсчета, причем формулы перехода между последними задаются не галилеевыми, а лоренцевыми преобразованиями. Этот постулат получил название Лоренц-инвариантность наблюдателя (ЛИН) и в рамках теории относительности не должен нарушаться ни в коем случае.

Однако в теории Эйнштейна существует еще один тип лоренцевой симметрии - Лоренц-инвариантность частицы (ЛИЧ), нарушение которой хотя и не вписывается в рамки стандартной СТО, но все же не требует радикального пересмотра теории при условии, что ЛИН сохраняется. Чтобы понять разницу между ЛИН и ЛИЧ, обратимся к примерам. Возьмем двух наблюдателей, один из которых находится на перроне, а другой сидит в поезде, проезжающем мимо без ускорения. ЛИН означает, что законы физики должны быть одинаковы для них. Пусть теперь наблюдатель в поезде встанет и начнет двигаться относительно поезда без ускорения. ЛИЧ означает, что законы физики должны по-прежнему быть одинаковы для этих наблюдателей. В данном случае ЛИН и ЛИЧ - это одно и то же - движущийся наблюдатель в поезде просто создает третью инерциальную систему отсчета. Однако можно показать, что в некоторых случаях ЛИЧ и ЛИН нетождественны, и поэтому при сохраненном ЛИН может происходить нарушение ЛИЧ. Понимание этого феномена требует введения понятия спонтанно нарушенной симметрии . Мы не будем вдаваться в математические подробности, просто обратимся к аналогиям.

Аналогия первая. Уравнения теории гравитации Ньютона, управляющие законами движения планет, имеют трехмерную вращательную симметрию (то есть неизменны при преобразованиях вращения в трехмерном пространстве). Однако Солнечная система, будучи решением этих уравнений, тем не менее нарушает эту симметрию, так как траектории планет располагаются не на поверхности сферы, а на плоскости, имеющей ось вращения. Группа трехмерных вращений (группа O(3), говоря математическим языком) на конкретном решении спонтанно нарушается до группы двухмерных вращений на плоскости O(2).

Аналогия вторая. Поставим стержень вертикально и приложим к его верхнему торцу силу, давящую вертикально вниз. Несмотря на то что сила действует строго вертикально и стержень изначально абсолютно прямой, он изогнется в сторону, причем направление изгиба будет случайным (спонтанным). Говорят, что решение (форма стержня после деформации) спонтанно нарушает начальную группу симметрии двухмерных вращений на плоскости, перпендикулярной стержню.

Аналогия третья. Предыдущие рассуждения касались спонтанного нарушения вращательной симметрии O(3). Пришло время для более общей лоренцевой симметрии, SO(1,3). Представим, что мы уменьшились настолько, что смогли проникнуть внутрь магнита. Там мы увидим множество магнитных диполей (доменов), выстроенных в одном направлении, которое называется направлением намагниченности. Сохранение ЛИН означает, что под каким бы углом зрения мы ни находились по отношению к направлению намагниченности, законы физики не должны меняться. Следовательно, движение какой-нибудь заряженной частицы внутри магнита не должно зависеть от того, стоим мы боком по отношению к ее траектории или лицом. Однако движение частицы, которая бы двигалась нам в лицо, будет отличным от движения той же частицы вбок, так как сила Лоренца, действующая на частицу, зависит от угла между векторами скорости частицы и направления магнитного поля. В этом случае говорят, что ЛИЧ спонтанно нарушена фоновым магнитным полем (создавшим выделенное направление в пространстве), тогда как ЛИН сохранена.

Иными словами, несмотря на то что уравнения, совместимые с теорией относительности Эйнштейна, сохраняют лоренцеву симметрию, некоторые их решения могут ее нарушать! Тогда можно легко объяснить, почему мы до сих пор не обнаружили отклонений от СТО: просто подавляющее большинство решений, физически реализующих то или иное наблюдаемое явление или эффект, сохраняют лоренцеву симметрию, и только некоторые - нет (или отклонения столь малы, что пока лежат за пределами наших экспериментальных возможностей). Эфир может быть как раз таким ЛИЧ-нарушающим решением каких-нибудь полевых уравнений, полностью совместимых с ЛИН. Вопрос: каковы поля, играющие роль эфира, существуют ли они, как их описать теоретически и обнаружить экспериментально?

ТЕОРИИ, ДОПУСКАЮЩИЕ НАРУШЕНИЕ ЛОРЕНЦ-СИММЕТРИИ

Теоретических примеров, когда лоренцева симметрия может нарушаться (как спонтанно, так и полностью), уже известно достаточно много. Приведем только самые интересные из них.

Вакуум Стандартной модели. Стандартной моделью (СМ) называется общепризнанная релятивистская квантовая теория поля, описывающая сильное, электромагнитное и слабое взаимодействия. Как известно, в квантовой теории физический вакуум не абсолютная пустота, он заполнен рождающимися и уничтожающимися частицами и античастицами. Такая флуктуирующая "квантовая пена" может быть представлена как разновидность эфира.

Пространство-время в квантовой теории гравитации. В квантовой гравитации предметом квантования служит само пространство-время. Предполагается, что на очень малых масштабах (обычно порядка планковской длины, то есть около 10-33 см) оно не непрерывно, а может представлять собой либо набор неких многомерных мембран (N-бран, как называют их сторонники теории струн и М-теории, - см. "Наука и жизнь" №№ 2, 3, 1997 г.), либо так называемую спиновую пену, состоящую из квантов объема и площади (как утверждают сторонники теории петлевой квантовой гравитации). В каждом из этих случаев лоренцева симметрия может нарушаться.

Теория струн. В 1989-1991 годах Алан Костелеки (Kostelecky), Стюарт Самуэль (Samuel) и Робертус Поттинг (Potting) продемонстрировали, каким образом нарушения Лоренц- и CPT-симметрии могут происходить в теории суперструн. Это, впрочем, не удивительно, так как теория суперструн еще далека от своей завершенности: она хорошо работает в высокоэнергетическом пределе, когда пространство-время 10- или 11-мерно, но не имеет единственного предела для низких энергий, когда размерность пространства-времени стремится к четырем (так называемая проблема ландшафта ). Поэтому в последнем случае она пока предсказывает практически все, что угодно.

М-теория. Во время второй "суперструнной революции", произошедшей в 1990-е годы, было осознано, что все пять 10-мерных суперструнных теорий связаны преобразованиями дуальности и поэтому оказываются частными случаями некой одной теории, названной М-теорией, "живущей" в числе измерений на одно больше - 11-мерном. Конкретная форма теории до сих пор неизвестна, но известны некоторые ее свойства и решения (описывающие многомерные мембраны *). В частности, известно, что М-теория необязательно должна быть Лоренц-инвариантной (причем не только в смысле ЛИЧ, но и в смысле ЛИН). Более того, это может быть нечто принципиально новое, в корне отличное от стандартной квантовой теории поля и теории относительности.

Некоммутативные теории поля. В этих экзотичных теориях пространственно-временные координаты - некоммутативные операторы, то есть, например, результат умножения координаты x на координату y не совпадает с результатом умножения координаты y на координату x, и лоренцева симметрия также нарушается. Сюда же можно отнести и неассоциативные теории поля, в которых, к примеру, (x x y) x z x x x (y x z) - неархимедовы теории поля (где поле чисел предполагается отличным от классического), и их всевозможные компиляции.

Теории гравитации со скалярным полем. Теория струн и большинство динамических моделей Вселенной предсказывают существование особого типа фундаментального взаимодействия - глобального скалярного поля, одного из вероятнейших кандидатов на роль "темной энергии", или "квинтэссенции". Имея очень малую энергию и длину волны, сравнимую с размерами Вселенной, это поле может создавать фон, который нарушает ЛИЧ. В эту же группу можно отнести и TeVeS - тензорно-векторно-скалярную теорию гравитации, разработанную Бекенштейном (Bekenstein) как релятивистский аналог модифицирован ной механики Милгрома (Milgrom). Впрочем, TeVeS, по мнению многих, заполучила не только достоинства теории Милгрома, но, к сожалению, и многие ее серьезные недостатки.

"Эйнштейн-эфир" Джейкобсона-Маттинли . Это новая теория векторного эфира, предложенная Тедом Джейкобсоном (Jacobson) и Давидом Маттинли (Mattingly) из университета штата Мериленд, в развитие которой вовлечен и автор. Можно допустить, что существует глобальное векторное поле, которое (в отличие от электромагнитного) не исчезает даже вдали от всех зарядов и масс. Вдали от них это поле описывается постоянным четырехвектором единичной длины. Система отсчета, которая ему сопутствует, выделенная и, таким образом, нарушает ЛИЧ (но не ЛИН, так как векторное поле считается релятивистским и все уравнения обладают лоренцевой симметрией).

Расширенная Стандартная модель (SME, или РСМ). Около десяти лет назад Дон Колладей (Colladay) и вышеупомянутые Костелеки и Поттинг предложили расширить Стандартную модель компонентами, которые нарушают ЛИЧ, но не ЛИН. Таким образом, это теория, в которой нарушение лоренцевой симметрии заложено уже изначально. Естественно, РСМ подогнана так, чтобы не противоречить обычной стандартной модели (СМ), по крайней мере той ее части, которая проверена экспериментально. По замыслу создателей, различия между РСМ и СМ должны проявиться при более высоких энергиях, например в ранней Вселенной или на проектируемых ускорителях. Кстати, о РСМ я узнал от моего соавтора и коллеги по кафедре Даниэля Сударски (Sudarsky), который сам сделал заметный вклад в развитие теории, показав вместе с соавторами в 2002 году, как квантовая гравитация и нарушенная ЛИЧ могут влиять на динамику частиц в космическом микроволновом излучении.

СЕЙЧАС МЫ ИХ ПРОВЕРИМ, СЕЙЧАС МЫ ИХ СРАВНИМ …

Экспериментов по поиску нарушения лоренцевой симметрии и выделенной системы отсчета очень много, и все они разные, а многие из них не прямые, а косвенные. Например, есть эксперименты, в которых ищут нарушения принципа CPT-симметрии , утверждающего, что все законы физики не должны изменяться при одновременном применении трех преобразований: замены частиц на античастицы (C-преобразование), зеркальном отражении пространства (P-преобразование) и обращении времени (T-преобразование). Дело в том, что из теоремы Белла-Паули-Людерса следует, что нарушение CPT-симметрии влечет нарушение лоренцевой симметрии. Эта информация очень полезна, так как в некоторых физических ситуациях первое обнаружить напрямую гораздо легче, чем второе.

Эксперименты а-ля Майкельсон-Морли . Как уже говорилось выше, с их помощью пытаются обнаружить анизотропию скорости света. В настоящее время наиболее точные эксперименты используют резонирующие камеры (resonant cavity): камера вращается на столе, и исследуются изменения в частотах микроволн внутри нее. Группа Джона Липы (Lipa) из Станфордского университета использует сверхпроводящие камеры. Группа Ахима Петерса (Peters) и Стефана Шиллера (Schiller) из Берлинского университета Гумбольдта и университета Дюссельдорфа использует лазерный свет в сапфировых резонаторах. Несмотря на постоянно растущую точность экспериментов (относительные точности уже достигают 10-15), никаких отклонений от предсказаний СТО обнаружено пока не было.

Прецессия ядерного спина. В 1960 году Вернон Хьюз (Hughes) и независимо от него Рон Древер (Drever) измеряли спиновую прецессию ядра лития-7 по мере того, как магнитное поле вращалось вместе с Землей относительно нашей Галактики. Никаких отклонений от предсказаний СТО обнаружено не было.

Осцилляции нейтрино? В свое время обнаружение феномена превращения одних типов нейтрино в другие (осцилляции - см. "Наука и жизнь" № 3, 2002 г.) вызвало фурор, так как это означало, что нейтрино имеют массу покоя, пусть даже и совсем маленькую, порядка электронвольта. Нарушение лоренцевой симметрии должно в принципе влиять на осцилляции, так что будущие экспериментальные данные могут дать ответ, сохраняется эта симметрия в системе нейтрино или нет.

Осцилляции К-мезонов . Слабое взаимодействие вынуждает К-мезон (каон) в процессе "жизни" превращаться в антикаон и затем обратно - осциллирует. Эти осцилляции настолько точно сбалансированы, что малейшее нарушение CPT-симметрии привело бы к заметному эффекту. Один из наиболее точных экспериментов провела коллаборация KTeV на ускорителе Теватрон (Национальная лаборатория им. Ферми). Результат: в каонных осцилляциях CPT-симметрия сохраняется с точностью до 10-21.

Эксперименты с антиматерией. Множество высокоточных CPT-экспериментов с антиматерией было проведено в настоящее время. Среди них: сравнение аномальных магнитных моментов электрона и позитрона в ловушках Пеннинга, сделанное группой Ганса Демелта (Dehmelt) в Вашингтонском университете, протон-антипротонные эксперименты в ЦЕРНе, проводимые группой Джеральда Габриелза (Gabrielse) из Гарварда. Никаких нарушений CPT-симметрии пока не обнаружено.

Сравнение хода часов. Берутся двое высокоточных часов, которые используют различные физические эффекты и, следовательно, должны по-разному отреагировать на возможное нарушение лоренцевой симметрии. Как следствие, должна возникнуть разность хода, которая будет сигналом, что симметрия нарушена. Эксперименты на Земле, проводимые в лаборатории Рональда Уолсворта (Walsworth) в Гарвард-Смитсонианском центре астрофизики и других институтах, достигли впечатляющей точности: показано, что лоренцева симметрия сохраняется с точностью до 10-27 для различных типов часов. Но это еще не предел: точность должна значительно улучшиться, если вывести приборы в космос. В ближайшее время планируется запуск нескольких орбитальных экспериментов - ACES, PARCS, RACE и SUMO - на борту Международной космической станции.

Свет от удаленных галактик. Измеряя поляризацию света, пришедшего от удаленных галактик в инфракрасном, оптическом и ультрафиолетовом диапазонах, можно добиться высокой точности в определении возможного нарушения CPT-симметрии в ранней Вселенной. Костелеки и Мэтью Мьюес (Mewes) из университета штата Индиана показали, что для такого света эта симметрия сохраняется с точностью до 10-32. В 1990 году группа Романа Джакива (Jackiw) из Массачусетского института технологии обосновала еще более точное ограничение - 10-42.

Космические лучи? Существует некая загадка, связанная с космическими лучами сверхвысоких энергий, приходящими к нам из космоса. Теория предсказывает, что энергия таких лучей не может быть выше некоего порогового значения - так называемого предела Грейзена-Зацепина-Кузьмина (GZK cutoff), которые подсчитали, что частицы с энергией выше 5 ґ 1019 электронвольт должны активно взаимодействовать с космическим микроволновым излучением на своем пути и растратить энергию на рождение пи-мезонов. Данные наблюдений бьют указанный порог на порядки! Есть множество теорий, которые объясняют этот эффект без привлечения гипотезы нарушения лоренцевой симметрии, но пока ни одна из них не стала доминирующей. Вместе с тем теория, предложенная в 1998 году Сидни Коулменом (Coleman) и нобелевским лауреатом Шелдоном Глешоу (Glashow) из Гарварда, предлагает объяснять феномен превышения порога именно нарушением лоренцевой симметрии.

Сравнение водорода и антиводорода. Если CPT-симметрия нарушена, то материя и антиматерия должны вести себя по-разному. В двух экспериментах в ЦЕРНе возле Женевы - ATHENA и ATRAP - ищут различия в спектрах излучения между атомами водорода (протон плюс электрон) и антиводорода (антипротон плюс позитрон). Различий пока не обнаружено.

Спиновый маятник. В этом эксперименте, проведенном Эриком Адельбергером (Adelberger) и Блейном Хекелем (Heckel) из Вашингтонского университета, используется материал, в котором спины электронов упорядочены в одном направлении, таким образом создавая общий макроскопический спиновый момент. Крутильный маятник, сделанный из такого материала, помещен внутрь оболочки, изолированной от внешнего магнитного поля (кстати, изоляция была едва ли не самой трудной задачей). Спин-зависимое нарушение лоренцевой симметрии должно проявиться в виде малых возмущений в колебаниях, которые бы зависели от ориентации маятника. Отсутствие таких возмущений позволило установить, что в этой системе лоренцева симметрия сохраняется с точностью до 10-29.

ЭПИЛОГ

Бытует мнение: теория Эйнштейна настолько прочно срослась с современной наукой, что физики уже и думать позабыли о ее ниспровержении. Реальная ситуация же как раз прямо противоположная: значительное число специалистов во всем мире заняты поисками фактов, экспериментальных и теоретических, которые могли бы … нет, не опровергнуть ее, это было бы слишком наивно, а найти границы применимости теории относительности. Пока эти усилия успехом не увенчались, теория оказалась весьма хорошо согласующейся с реальностью. Но, конечно, когда-нибудь это произойдет (вспомните, например, что полностью последовательная теория квантовой гравитации пока еще не создана), и на смену теории Эйнштейна придет другая, более общая (как знать, может быть, в ней найдется место и для эфира?).

Но сила физики - в ее преемственности. Каждая новая теория должна включать в себя предыдущую, как это было с заменой механики и теории тяготения Ньютона на специальную и общую теории относительности. И точно так же, как теория Ньютона по-прежнему находит свое применение, так и теория Эйнштейна на многие столетия останется полезной для человечества. Нам остается только пожалеть бедных студентов будущего, которым придется изучать и теорию Ньютона, и теорию Эйнштейна, и теорию Икс… Впрочем, оно и к лучшему - не зефиром единым жив человек.

Литература

Уилл К. Теория и эксперимент в гравитационной физике. - М.: Энергоатомиздат, 1985, 294 с.

Костелеки А., вебсайт http://www.physics.indiana.edu/~kostelec/faq.html

Eling С., Jacobson Т., Mattingly D. Einstein-Aether Theory. - gr-qc/0410001.

Bear D. et al. 2000 Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser // Phys. Rev. Lett. 85 5038.

Bluhm R. et al. 2002 Clock-comparison tests of CPT and Lorentz symmetry in space // Phys. Rev. Lett. 88 090801.

Carroll S., Field G. and Jackiw R. 1990 Limits on a Lorentz- and parity-violating modification of electrodynamics // Phys. Rev. D 41 1231.

Greenberg O. 2002 CPT violation implies violation of Lorentz invariance // Phys. Rev. Lett. 89 231602.

Kostelecky А. and Mewes М. 2002 Signals for Lorentz violation in electrodynamics // Phys. Rev. D 66 056005.

Lipa J. et al. 2003 New limit on signals of Lorentz violation in electrodynamics // Phys. Rev. Lett. 90 060403.

Muller H. et al. 2003 Modern Michelson-Morley experiment using cryogenic optical resonators // Phys. Rev. Lett. 91 020401.

Sudarsky D., Urrutia L. and Vucetich H. 2002 Observational bounds on quantum gravity signals using existing data // Phys. Rev. Lett. 89 231301.

Wolf P. et al. 2003 Tests of Lorentz invariance using a microwave resonator // Phys. Rev. Lett. 90 060402.

"Наука и жизнь", №2, 2007


Вы здесь » РЕДУКТОР » Естественные науки » Противоречит ли эфир теории относительности Эйнштейна?